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1. Introduction

There have been only a few parametric models extensively examined

for application to reliability; these include the exponential.distri-

bution of Epstein-Sobel [6], the Weibull distribution C14], and the

fatigue model of Birnbaum-Saunders [4]. The one most widely utilized

for electronic components has been the exponential model, not only

because of its simple and intuitive properties but also because of the

extent of the estimation and sampling procedures which have been developed

from the theory.

One of the early discoveries was that mixtures of exponentially

distributed random variables have a decreasing failure rate, see [Ii].

Thus any two groups of components with constant, but different, failure

rates would, if mixed and sampled at random, exhibit a decreasing failure
#

rate. As a conseqdience, the family of life lengths with decreasing

failure rate certainly arises in practice and particular subsets of this

family could be of great utility for specific applications, see e.g.

Cozzolino C5]. We examine one such model with shape and scale

parameters, call them a and $ respectively, which'is based upon a

particular mixture of exponential distributions. This family was intro-

duced by Afanas'ev [] and later by Lomax [10] as a generalization of a

Pareto distribution. Section 3 compares this mixed exponential

distribution to the exponential distribution using data from Poseidon

flight control packages.

Kulldorff and V~Inman [9] and Vrmnan E13] have studied a variant

of this mixed exponential model containing a location parameter. They
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obtained a best linear unbiased estimate of the scale parameter

assuming that the shape parameter, call it a, was known and in a

region restricted so that both the mean and the variance exist, namely

a > 2. When this restriction of a > 2 cannot be met an estimate based

on a few order statistics, which are optimally spaced, is claimed

to be an asymptotically best linear unbiased estimate and tables

of the weights as functions of the number of spacings are provided. In

all cases, the shape parameter was assumed known and the sample was

either complete or type II censored. It is contended that BLUE

estimates of the shape parameter are not attainable.

Harris and Singpurwalla [7] examined the method of moments as an

estimation procedure for this same model but again with the shape

parameter restricted to a > 2 and with a complete sample.

In both papers [9] and [7], it is stated that maximum likelihood

estimates are difficult to obtain. In a later paper Harris and

Singpurwalla [81 exhibit the maximum likelihood equations for complete

samples.

In this paper the maximum likelihood estimates for both the shape

and scale parameters are obtained, jointly and separately, with simple

sufficient conditions given for their existence. These estimates are

derived for censored data (and a fortori for complete samples) even with

a paucity of failure observations, namely one.

The existence conditions obtained here for the maximum likelihood

estimates apply even to the case where the variance and possibly the

mean do not exist: 0 < a < 2. Moreover, the estimates of the shape



paramete-., a which have been obtained from actual data indicate that

this region 0 < a < 2 is important because all the estimates obtained

of a have beer less than unity.

2. The Model

We postulate that the underlying process which determines the length

of life of the component under consideration is the following: The

quality of construction determines a level of resistance to stress which

the component can tolerate. The service environnent provides shocks

of varying magnitude to the component,and failure takes place when for

the first time the stress from an environmentally induced shock exceeds

the strength of the component.

If the time between shocks of any magnitude is exponentially

distributed with a mean depending upon that magnitude then the life

length of each component will be exponentially distributed with a 'failure

rate which is determined by the quality of assembly. It follows that

each component has a constant failure rate but that the variability in

manufacture and inspection techniques forces some components to be

extremely good while a few others are bad and most are in between.

Let be the life length of a component in such a service

environment, with a constant failure rate X which is unknown. The

variability of manufacture determines various percentages of the X-values

and this variability can be described by some distribution, say G.

I .. ... _IL . ... .. . t.,. : n . '. ,. .j. -. =r. '.l,;, i' " - " -
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Let T be the life length of one of the components which is

selected at random from the population of manufactured components.

We denote the reliability of this component by R and we have

R(t) P [ > tJ for t > o.

Let A be the random variable which has distribution G. We

can write

R(t) E EA PtX x> tIA = X} I f e-At dG(X).(1
0

Because of having a form which can fit a wide variety of practical

situations when both scale and shape parameters are disposable, it is

assumed that G is a gamma distribution, i.e., for some a > 0, B > 0.

a-1le- /p

g(k) = for X > 0.
r(a) pa

That this assumption is robust, even when mixing as few as five

equally weighted X's, has been shown by recent work of Sunjata in an

unpublished thesis C12]. It follows from equation (1) that the reliability

function is

R(t) = e -a Zn(l+tp) (2)
(l+t,)a

The failure rate, hazard rate, can be shown to be

q(t) = J+tp

which is a decreasing function of t > 0.
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Maximum likelihood estimates for a ,a and hence R(t) and q(t) are

given in Section 5.

3. A Comparison of the Mixed Exponential with Exponential Using Real Data

Data has been accumulating for years in the assessment of the

reliability of electronic equipment for which there was no adequate

statistical model. The following difficulties were recognized by

practitioners: 1. The assumption of constant or increasing failure rate

seemed to be incorrect. 2. However, the design of this electronic

equipment indicated that individual items should exhibit a constant

failure rate. A mixed exponential life distribution accounts for both

the design knowledge and the observed life lengths. Maximum likelihood

procedures allow for joint estimation of the parameters of this

distribution in the most comonly encountered situation where complete

data is not available.

We now give some actual data sets from two different lots of

Poseidon flight control electronic packages which illustrate these

points. Each package has recorded, in minutes, either a failure tim.e

or an alive time. An alive time is sometimes called a "run-out" and

is the time the life test was terminated with the package still functioning.

First Data Set

Failure times: 1, 8, 10

Alive times: 59, 72, 76, 113, 117, 124, 145, 149, 153, 182, 320.

Second Data Set

Failure times. 37, 53

Alive times: 60, 64, 66, 70, 72, 96, 123.
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If we assume that the data are observations from an exponential

distribution (constant failure rate X) then using the total life

statistic, we have the estimates of reliability given in the left

hand side of the table. If we assume that the data are observations

from the mixed exponential distribution of equation (2) then using

estimation techniques derived subsequently in this paper we have the

estimates for reliability given in the right hand side of the table.

Exponential estimate Mixed exponential estimate
of reliability of reliability

time t Set 1 Set 2 Set 1 Set 2
in min. l(t) R2 (t) Rl(t) R2 (t)"

6 .988 .981 .915 .976

10 .980 .969 .896 .961

30 .943 .911 .855 .896

50 .906 .856 .836 .843

100 .821 -- .810

130 .774 -- .801

X: .00017 .00312 a: .0453 .420

P: 1.03 .01

Looldng at the data from the two sets we would expect that at least for

the first fifty minutes the reliability estimate for the second set of

data would be higher then the reliability estimate for the first set of
data, because in the first set 3 failure out of 14 trials have occurred

in the first ten minutes while in the second set only 1 failure out of 9

trials has occurred in the first fifty minutes. However, under the



exponential assurption the reliability estimates for the first data set

are consistently higher. Note that the mixed exponential estimates

are more consistent with what the data show; that is, for at least the

first 50 minutes we expect the reliability estimate for the second set

of data to be higher than the reliability estimate for the first set

of data. Beyond this time, however, say at 100 minutes, the data

indicate that the reliability estimate from the first set of data should

be higher than the reliability estimate from the second set of data.

Using mixed exponential estimates this is the case.

A statistical test to determine whether the data require a constant

or decreasing failure rate was run on the data from Sets 1 and 2. For

data Set 1 we reject constant failure rate in favor of decreasing failure

rate at the .10 level. For data Set 2 we cannot reject the constant

failure rate asstuption. In this case, however, the constant failure

rate estimates for reliability and the mixed exponential estimates for

reliability are close. For data Set 2 one should not estimate

reliability much beyond about 70 minutes since we do not have data to

support those estimates.

4. Residual Life Property of the Model

An important property of this model is that residual life on a

component is distributed as a mixed exponential. Thus a "burn-in"

test of a component will yield a residual life which is also in the same

family. This property seems to be shared only with the exponential among

camon parametric families of life distributions.

La ~ ~ ~ --A. ...-
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The residual life Th of a component is defined to be the life

remaining after time h, given that the component is alive at time h.

It can be shown that:

A burn-in for h units of time on a component with initial

life determined by a mixed exponential distribution with parameters

a and 8 will yield a residual life Th and will be destributed as a

mixed exponential with parameters a ad.

It follows that this life length model is "used better than new"

or "new worse than used" in the sense that we have stochastic

inequality between a new component and one that has been burned in,

namely

st
T < Th  for all h > 0.

An important consequence of this property is that one can calculate

the value of the increased reliability attained by burn-in procedures

as compared with the cost of conducting them. It has long been the

practice to burn in electronic components based on intuitive ideas of

"infant mortality" in order to provide reasonable assurance of having

detected all defectively asserbled units. This model, whenever it is

applicable, makes possible an economic analysis. A variation of this

result has been discussed in [3].

Example

As an example of the applicability of this property, consider test

data from Trident flight control packages.
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Assume that burn-in data is distributed as a mixed exronential

with shape parameter a and scale parameter B. These parameters were

estimated (formulas in Section 5 ) to be

= .57

B = .0104 ^
af =

1+(48) (60Ja

Burn-in

48 hours

a= .57

B = .0104

After 48 hours of burn-in the residual life T4 8 hours should be mixed

exponential with parameters a and B . The first graph shows
!+2B B

the change in Bf as a function of burn-in hours. The second graph

shows the change in estimated reliabilities at 20 minutes as a fuLnction

of burn-in time, where reliability at time 20 minutes is estimated to

be ^
R(t) = [1 + 20 fI

af decreases as burn-in time increases.
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Data consistent with success and failure data was obtained from another test

called Pre-Test. We assume that the time to failure T of flight control

packages subjected to this type of test environment follows a mixed

exponential distribution with shape parameter a and scale parameter

8. Using Pre-Test data these parameters were estimated (formulas in

Section 5 ) to be

a = .5739

8 = .1106

Pre-Test

60 minutes

a = .5739

8 = .1106

After 60 minutes of test the residual life T6 should be a mixed

exponential with parameters a and 8 . We estimate these
1+608

parameters by

a .5739

.1106 - .0145

l+t8 1 + 60(.1106)

* ' . . *I. i. I, I - | I . . ; " i- = l 
' ' ml

-" 'h I " -.. .
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a f .0145

1-i+ 608

R f(1) = .99

> Pre-Test

t = 60 mitn

/

/

= .5739

8 .1106

R(l) = .94

Since R(t) (1 + 6t) " , we estimate reliability at 1 minute for a package

which has not gone through Pre-Test to be

N (60) = Cl + (.1106)(1)]- .5739 = .94

We estimate reliability at 1 minute for a package which has gone through

Pre-Test to be

R^f(60) = CI + (.0145)(i)]- 5739 
- .99

Note that these reliabilities are for Pre-Test environments.
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Now consider the entire screen test scherm for Trident flight control

packages.

Post

Pre-Test No. 1 Burn-In

Burn-In (Job Stack)

(Job Stack)

No. 1 Post Post No. 2
Te-7 Temp Temp. Cyc. Closure Temp.
Cyc. (Job Stack) (Job Stack) Cyc.

Post Shock Post Pressure
Temp. Cyc. Vibration S.&V. Altitude
(Job Stack) (Job Stack)

Post Post No. 2
P.&A. No. 2 Burn-In Continuity

Burn-In
(Job Stack) (Job Stack)

Final
ATP

(Job Stack)

Note: All Job Stack tests are the samie.
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Effects of various environmental or burn-in tests (in the sense of

reliability gain) can be estimated by comparing reliability estimates forecast

at the end of the Job Stack which proceeds the environment to reliability

estimates for the Job Stack which follows the environment. For example

a3f!

Post

Burn-In
- Pre-Test Burn-In

(Job Stack) (Job Stack)

t = 60 min

a 82

1 B21 
a is fixed at aCL

If burn-in is effective then we would expect that

2 < B 1f

-4
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5. Estimation of Parameters with Censored Data

Let us assume throughout this section that we are given

tl,...,t k as observed times of failure while t k+ ... ,t n are

observed alive-times both obtained from a mixed exponential (a ,a )

life distribution with 1 :5 k s n. We define two functions for x > 0.

S1 (x) = E £n(l+tix) S 2 (x) (+tX)
j.=l

A result on the maximum likelihood estimation (m.l.e.) of the urnown

parameters is now given which utilizes data of this type.

Theorem: Under the assumptions and conditions given

(i) When P > 0 is known, there exists a unique

m.l.e. of .a , say a , given explicitly by

a - k/S 1 (a)

(ii) When a > 0 is known, there exists a unique
A

m.l.e. of 8 , say 8 , given explicitly by

A A (0)

where A is the monotone decreasing function

defined by

A(x) = kS 2 (x) - axS l (x) for x > 0
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with primes denoting derivatives.

(iii) When a,8 are both unknown, the m.l.e. of 8

say 8 is given implicitly, when it exists

positively and finitely, by

-B 1 (O)

where B is the function defined by

S2(x) S1(x)
B(x) x - for x > 0

and the m.l.e. of a , say a , is given expli-

citly by

=k/S 1 )

* Theorem: The inequality for . f- k _5 n

k n n
tiC 3t < 2

< j (4)

* is a sufficient condition which a (censored) sample from a mixed

exponential (a,8) distribution must satisfy in order that maximum

likelihood estimators of both parameters exist both positively and finitely.

i • I
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6. Computational Considerations

The question which now arises is: what kinds of samples will

satisfy condition (4)? If k = n we see (4) is equivalent with

from which we have the

Remark: A complete sample of failure times will satisfy (4) if the

sample standard deviation exceeds the sample mean.

It can be shown that if T has a mixed exponential (a,a) distribution

then

E CT] = [S(a-l)] -1 for c>l

Var [T] =a a2(a-l)2 (a-2)2] - I for a>2
Thus the standard deviation does exceed the mean for those values of the

I

parameters where the mean ECT] and the variance, V[T], exist.

Remark: A sample with k < n failure times and the remaining n-k

observations truncated at t0 will satisfy (4) if

k 2n-ktO n i]n- 1 -n L or n large

where ni = tl+...+tk)/k is the average failure time.

In the calculation of 0 the equation, C(a) = 0, nmust be solved where

C(s) = aS (8)S2(0) or

n n k

0(a) t - 3 n(l+t 5)1I l+tj a- +t a
lJ=1
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where t,...,t k are failure times and tk+l,...,t n are censored life

times. We introduce notation for the sample moments as follows:

k n

nr tj , n t r or r-,2,3,.., (5)
i=l 1=1

then using the two expansions, valid for jxj < 1 ,

x 3  1.= 1 - x + X2Ln(l+x) - x + -- " "'" 1 X +-x

and substituting into C and simplifying we find, upon neglecting

terms of third order in B , that

2

(1'+n W +C + ;' -S) "c- 6~'Z+;3 2 a 0

Multiplying the first two together and collecting terms yields

n O nl 2 2
-; (;3 n2l 2 =

We now noti e that the condition equation (4), can be written in the

notation of (5) as 2 > 2n! l.

Thus our computational procedure to decide upon the parametric

representation of the distribution governing the observations which have

been obtained is cont7_'ned in the following.

Algorithm: Given tl, . , tk as failure times and tkl..., t as

censored times from a mixed exponential (c,a) distribution

i) Compute the sample moments nl, n2 3 l' t2' 3'

,.w l..'
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(ii) If 2 < 2Tll, assume observations from a constnat failure rate

distribution and estimate X by

k

nC1

(iii) If 42 > 2nlC1, assume observations are from a mixed exponential

distribution and compute

r 2 - 2-lq l
2 3 - 2r12Y 1 - 'Il 2

then use the Newton-Raphson interation procedure, namely

for n = 0, 1, 2,.....

C(P n)
Pn+l Pn'- C P P =lim Pn ,andc'(n) n -

&= k
n

Z Zn(l+tj)
J=1

Practical experience indicates that the iteration converges very

rapidly. Since the functions are very simple a small prograrrnable

electronic calculator, such as the HP-65, can be used to obtain these

estimates. Programs for the HP-65 and HP-97 are available from the

authors.
t

, pnf - -
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7. Conclusion

If a component has a life distribution with an increasing

failure rate, the information necessary to estimate its parameters

must contain failure times. In practice this means that virtually

no observed failures, within a fleet of operational components, provide

little information with which to assess reliability.

If a component has a constant failure rate then both failure

times and alive times contribute equally to its estimation. The

preceeding study suggests that if a component has a life distribution

with decreasing failure rate it is the alive times within the data

which contribute principally to the estimation of the parameters.

The problem of obtaining the usual sampling distributions of

the maximum likelihood estimators of the parameters for the decreasing

failure rate model studied seems to be difficult because the estimates

are only implicitly defined. We have shown, however, that when they

exist the KLE's for a and $, based on type I or on random censoring,

are asymptotically normally distributed. We have also shown that the

distribution function estimated using the joint MLE's of the parameters

is surprisingly closer to the true distribution for regions of interest

in reliability theory, than is the estimated distribution function

using a BLUE-k estimate for the scale parameter and a known shape' parameter.

I
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